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1. Introduction

Viscous incompressible flows are of considerable interest for applications.
Let us mention, for example, the design of hydraulic turbines or rheologi-
cally complex flows appearing in many processes involving plastics or molten
metals. Their simulation raises a number of difficulties, some of which are
likely to remain while others are now resolved. Among the latter are those
related to incompressibility which are also present in the simulation of in-
compressible or nearly incompressible elastic materials. Among the still
unresolved are those associated with high Reynolds numbers which are also
met in compressible flows. They involve the formation of boundary layers
and turbulence, an ever present phenomenon in fluid mechanics, implying
that we have to simulate unsteady, highly unstable phenomena.

This article will deal mainly with problems associated with incompres-
sibility effects but will also try to address the other issues. It will not be
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an exhaustive presentation and will evidently be somewhat biased by the
prejudices of the author and his ignorance of many areas of an ever growing
literature. The reader might consult the books by Girault and Raviart
(1986) where other mathematical aspects of the problem are treated. The
book by Hughes (1987) is application-oriented and is a good reference for
those interested in the actual implementation of finite element methods.
The reader should also refer to Pironneau (1989) or to Thomasset (1981)
for more information and other aspects of the problem.

2. The finite element method
2.1. Sobolev spaces

Let L2(Q) be the space of square integrable functions. We then define the
Sobolev spaces,

H™(Q) = {v|v € L}(Q), D € L*(Q), |a| < m} (2.1)

where D% = 9l°lv/9251025? ... 8z2", |a| = @1 + a2 + -+ + ay. For our
purpose,the most important of these spaces will be H!(2) (and some of its
subspaces). We define on H™((?), the semi-norm

[vlm,@ = ( > /QID"v(w)Px)m- (2.2)

|a|=m

It is then clear that |v|g g is the usual norm on L?(2). In general, we shall
use on H™(?) the standard norm

1/2
olma = ( X ki) 23)

la|]<m
) 1/2
which on H}(Q) reduces to ||v]|1,0 = (|”|(2),9 + |v|iQ) i

2.2. Conforming finite elements

We shall be interested here in finite element approzimations of H}(f2) and
L?(R). It is not possible to give a complete presentation of the finite element
methods as this would require a book in itself. We refer to Ciarlet (1978),
Ciarlet and Lions (1991), Hughes (1987), Raviart and Thomas (1983) or to
the classical Zienkiewicz (1977) for a general presentation. For more specific
issues and details on many of the topics introduced here, Brezzi and Fortin
(1991) should be a suitable reference. We nevertheless need a minimum of
notation.

The basic idea of the finite element method is to construct a partition T}, of
the domain by subdividing it into triangles or quadrilaterals which will be
called elements. One then builds approximations using polynomial functions
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defined element-wise with some continuity requirements at the interfaces
between the elements. To approximate L2(2) no continuity is required while
C%(Q)-continuity yields correct approximations of H1(2) . Higher-order
continuity properties would be required for higher-order Sobolev spaces. To
describe finite element approximations more precisely we shall need a few
definitions. Let us define on an element K € T the space of polynomials of
degree < k,

Pu(K) = {p(z1,23) | p(z1,02) = Y ay 7} 23} (24)
i+j<k

The dimension of Py(K) is (k+1)(k+2)/2 for n = 2 and for n = 3,
(k+ 1)(k + 2)(k + 3)/6. We shall also use, (for n = 2)

Py e, (K) = {p(x1,$2) | p(z1,22) = ) aij 7 x%} (2.5)

i<ky

J<ke
the space of polynomials of degree < k1 in z; and < k2 in z2. In the same
way we can define Py, , x, (K) for n = 3. The dimension of these spaces is
respectively (k1 + 1)(k2 + 1) and (k; + 1)(k2 + 1)(k3 + 1). We then define

[ Pex(K) forn=2,
Qk(K)_{P::k(K) for n = 3.

The classical finite element approximations are obtained by using polyno-
mials like Py (K) or Qx(K) on some reference element K and to carry them
over to an arbitrary element K by a change of variable:

vplg =Do F71, (2.7)

(2.6)

where K = F(k ) and ¥ is a polynomial function on K. Continuity is
obtained by a suitable choice of the degrees of freedom, that is, interpola-
tion points defining the polynomials. The simplest case is described in the
following example.

Example 2.1 (Affine finite elements.) This is the most classical family of
finite elements. The reference element is the triangle K of Figure 2.1 and
we use the affine transformation

F(%) = zo + B%, (2.8)

where B is a two-by-two matrix.

The element K = F(K) is an arbitrary triangle and it is not degenerate
provided det B # 0. We now take P = P,(K) and choose an appropriate
set of degrees of freedom. The standard choices for k¥ < 3 are presented on
Figure 2.2 where the dots represent the degrees of freedom. One notes that
this choice of points ensures continuity at the element interfaces. O
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.
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(1,0)

Fig. 2.1. Affine transformation.

Fig. 2.2. Standard affine elements.

The next example presents a second classical family of finite elements.
They are defined on arbitrary quadrilaterals and will not be polynomial
functions even though they are obtained by applying a change of variables
to a polynomial.

Example 2.2 (Quadrilateral elements.) The reference element concern-
ed is taken to be the square K =]0,1[x]0,1[. We take P = Qx(K) and a
transformation F' with each component in Ql(R’ ). We present the standard
choice of degrees of freedom for k =1 in Figure 2.3. It must be noted that
we need F € (Q1(K))? to define a general straight-sided quadrilateral. O

Finally we recall that it is possible to employ curved elements to obtain
better approximation properties near the boundary of the domain 2.

Example 2.3 (Isoparametric elements.) Let us first consider the trian-
gular case. We shall use the same reference element and the same set P
as in Example 2.1. We now take the transformation F(£) so that each of

Fig. 2.3. @) isoparametric element.
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Fig. 2.4. Curved triangular element.

its components F; belongs to Py(K). For k = 1 nothing is changed but
for k > 2, the element K now has curved boundaries. We depict the case
k = 2 in Figure 2.4. It must be noted that the curvature of element bound-
aries introduces additional terms in the approximation error and the curved
elements should be used only when they are really necessary (Ciarlet and
Raviart (1972) or Ciarlet (1978)). Similar constructions enable us to define
isoparametric quadrilateral elements using F € Q(K). O

We note again that the degrees of freedom have been chosen in order to
ensure continuity between elements. We also need some basic results about
the accuracy of interpolation by finite element functions. In dealing with
H(Q), one generally employs Lagrange interpolation, that is, the value of
the interpolant at the degrees of freedom are computed from the value of
the functions at these points, excluding derivatives. There is, however, a
difficulty as point values of functions in H!(f2) are not, in general, defined.
This can be circumvented by using the technique of Clément (1975) where
local averages are employed instead of point values. The details are beyond
the scope of this article. We shall only cite a very basic result, assuming 7,
to be defined by the usual Lagrange interpolant.

Proposition 2.1 If the mapping F is affine, that is F(£) = o+ B%, and if
Thpk = pi for any px € Py(K), we have forv e H*(Q),m<s,1<s<k+1

v = Tholm,x < e [|B7H™ |BII® Jvls, k- (2.9)

As we said above, the condition s > 1 is required in order to ensure that
point values of the function to be interpolated are well defined and the result
can be improved (cf. Brezzi and Fortin (1991)). To obtain global results
on {2, we shall need some assumption to ensure that the partition 7} is not
degenerate, i.e. that the angles of the triangles are bounded away from 7.
Let then hi be the diameter of K, and let us define, for affine elements,
hx

oK = 2.10
K PK ( )
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where pg is the diameter of the largest inscribed disk (or sphere) in K. We
then say that a family of triangulations (73)n>0 is regular if

ox <o, VK €T, Vh. (2.11)
One may then prove the following result.

Proposition 2.2 If (71),>0 is a regular family of affine partitions, there
exists a constant ¢ depending on k and on ¢ and an interpolation operator
II; such that

Z hi{m_zhj - Hlvlfn’K < C””“%,n m=0,1. 0 (2.12)
K

For more general partitions including general isoparametric elements, the
result is qualitatively the same: we have an O(h*) approximation provided
the family of partitions is regular in a sense which has to be made precise
for each type of partition.

Finally, we introduce some notation for the usual spaces of finite element
approximations. We thus define

£: = {v | vk € P(K), ve H'(Q)}. (2.13)

In the same way we shall write Lfk] when 7}, consists of quadrilaterals and

the local approximations are built from Qk(ﬁ' ) by an appropriate change of
variables. We shall also quite often need a class of functions called bubble
functions. For an element K a bubble function is a function vanishing on
OK. In particular, we shall denote

{ By, = (Pe(K) N Hy(K)), (2.14)

B[k] =Qr(K)N H&(K))

2.8. Scaling argument

In some of the proofs, we shall invoke scaling arguments in order to express
the dependence of some quantities on the finenes of the mesh. The standard
procedure (cf. Ciarlet (1978)) is to map the quantity to be estimated on a
reference element K on which it can be computed and then to study the
effect of the change of variables which maps K to an arbitrary element K
in the partition. An interesting variant of this procedure, introduced by
Dupont and Scott (1980), consists essentially of separating the two issues of
the size and the shape of the element. Indeed, using the change of variables

z=hga+b, (2.15)
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one can easily check the effect of mesh size on a given quantity. In this way
one sees that one has

) = |op|, £
[valx = lonly g (2.16)
lvrlo,x = bk [Only & »

and many other similar relations. The effect of shape is then treated by an
argument of compactness: a continuous function is bounded on a compact
set. One obtains in this way, for a general transformation,

[vnl1xc = c(k, 80)|Onl; £ » (2.17)

where k is the degree of polynomials employed and g is the smallest angle
of the mesh. We refer the reader to Dupont and Scott(1980) or Brezzi and
Fortin(1991) for more details.

3. Presentation of the problem

Let  be a domain of R? or R? and let us denote I' its boundary. We shall
want to solve in this domain, over a time interval |0, T'[, the Navier-Stokes
equations of incompressible fluid flow with initial conditions and boundary
conditions. Let p be the density of the fluid, u its velocity and p, its pressure.
We thus have to find in 2, a solution of

p(%‘+u-gradu) —2u Au + gradp = pf, (3.1)
divu =0, (3.2)
u(z,0) = uo(x). (3.3)
In equation (3.1), we have denoted
Py 0 ou oy
Au = 0z2 2012 \0z2 Om1 (3.4)

62u2 1 0 6u1 3’112)
0r3 %011 \0z2 011/’

Taking (3.2) into account, it is easily seen that we have
2Au = Au. (3.5)

However, the variational formulation and natural boundary conditions will,
as we shall see later, be different for these two forms of the equations. We
consider a part I'p of I' on which Dirichlet boundary conditions are given,

ulr, =0, (3.6)

and a part I'y on which Neumann type conditions are specified, that is, in
the present case, a condition on stresses is given. Let m be the outward
unit normal to I',, and ¢ the associated tangent vector for a two-dimensional
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problem or let ¢;,t2 be tangent vectors for a three-dimensional problem. We
then impose, g = {gn, 9t, gt2} being given, the boundary conditions on I i

ou-n
-p+ 2“_571_ = gn, (3.7
oun Ou-t; _ .
u ( ot + Wn_) = g¢g, =12 (3.8)

For two-dimensional problems, we have only one tangent vector and one
condition in (3.8) instead of two. We shall, in fact, work with a variational
formulation of the Navier—Stokes equations, and for this we shall need to
define appropriate function spaces. Let us denote

V = (H(®)? = {vlv € (H' (@))% vIr, =0} (3.9)

Q = L*(Q). (3.10)
We also define the rate-of-strain tensor e(u) by
1 Bu, an

€ij = 5 (623] + 627,) . (311)

Let ¥ =]0, T[x2 and let us seek a weak solution u € L2(0,T; V), p € L*(X)
of equations (3.1)—(3.3), that is, let us look for {u,p}, solution of

([,
o Ot

) _/f.vdx—/pdivvd.r:O, YveV (3.12)
Q Q

dx+2u/ e(u):e(v)da:+/ u-grad u-vdz
Q Q

/ gdivudz =0, VqeQ,
\ JQ
where the meaning of du/dt would have to be made precise.

Remark 3.1 It can be easily checked through an integration by parts that
the natural boundary conditions associated with this variational formulation
are precisely (3.6)—(3.8). This would not be the case had we employed,
instead of

2;;/95(14) : (V) dz,

a different bilinear form such as p [, grad u : grad v dz which leads to the
same equations inside 2 but with the boundary conditions

—P+p—p— = gnonly, (3.13)

ou-t

—EE— = gtOIlFN. (314)
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It is also possible to obtain as a natural condition
rotulr = g, (3.15)

using p forotu : rotvdz as a bilinear form, which still generates the same
differential operator in 2. O

We refer the reader to Temam (1977) or Lions (1969) for a complete
presentation of existence and uniqueness results. One striking point with
respect to these equations is the absence of an equation containing dp/dt:
thus our system is not of the Cauchy—Kowalevska type. In fact the pressure
appears here as a Lagrange multiplier associated with the divergence-free
condition dive = 0. To understand this we shall, in the next section,
consider the simplified steady-state Stokes problem, valid for low-speed or
highly viscous flows. For the moment, we shall highlight an additional prop-
erty of the above equations. They are equations of ‘convection—diffusion’
type, by which it is meant that they model the mixing of transport phe-
nomena with diffusion. It is well known that in this kind of problem the
behaviour of the solution is determined by the relative magnitudes of the
convection and the diffusion terms. Diffusion-dominated problems behave
like standard parabolic equations while advection-dominated ones, although
theoretically parabolic, behave almost as if they were hyperbolic, except in
some small regions, ‘boundary layers’, where diffusion effects reappear with
startling consequences. In the case of the Navier-Stokes equations, the ratio
of advection to diffusion is expressed by the Reynolds number. It is obtained
by non-dimensionalizing the equations and has the form

Re = Bgﬁ (3.16)
7
It must be emphasized that a Reynolds number has no absolute meaning: it
is a relative number. It enables problems in the same geometry with similar
boundary conditions to be compared. In practice, high Reynolds number
problems are difficult and must be handled with care but there is no absolute
scale for ‘large’ or ‘small’ .

4. The Stokes problem: incompressibility and pressure
4.1. The continuous problem

We shall consider in this section the simplest possible incompressible flow
problem, the steady-state Stokes problem, obtained from equations (3.1)—
(3.2) by neglecting the time derivative and the inertial terms wgrad u. This
approzimation of the Navier—Stokes equations is valid for very low Reynolds
numbers, that is for small velocities or high viscosity. The problem thus



248 M. FORTIN

becomes:
—2u Au +gradp = f, (4.1)
divu =g, (4.2)
ulr = 0. (4.3)

In (4.2) we have introduced a non-zero right-hand side g € Q. This is for
the sake of generality and causes no additional difficulty. In most cases, we
shall take g = 0. We shall describe how the Stokes problem can be seen as
a constrained optimization problem and how pressure appears naturally as
a Lagrange multiplier. This will enable us to apply the general results of
Brezzi (1974), Babuska (1973) or Brezzi and Fortin (1991). This will also
help us later in the construction of numerical algorithms for the computation
of the pressure. First we define

a(u,v) = 2u /Q ) : ef) da, (4.4)
b(v,q) = —/quivvd:z;. (4.5)

Clearly, problem (4.1)—(4.3) can be written in the form:

{ a(u,v) +b(v,p) = (f,v), Yvey, (4.6)
b(u,q) = (9,9), Vge€Q. '

This problem is nothing but the optimality condition of a saddle-point
problem,

inf sup p,/ |s('u)|2dz—/qdiv'vda:—/f-'vdz+/ gqdz, (4.7)
VeV ¢qeQ Q Q Q Q

which is equivalent to the contrained minimization problem,

: 2
Lnf u /Q le@)|? dz — /Q fvde. (4.8)
In this context, it is clear that the pressure may be seen as the Lagrange
multiplier associated with the constraint divv = g. This will also remain
true, in a generalized sense, for the full Navier-Stokes problem (3.1)—(3.3).
If we now return to problem (4.6), we also see that we are now dealing with
a mized variational formulation (Brezzi 1974, Brezzi and Fortin 1991) and
we have a general framework in which to study our problem. In general, the
existence and uniqueness of the solution of a problem of type (4.6) requires
two conditions. The first one is coercivity of the bilinear form a(-,-) on V. In
the case of the Stokes problem, in the setting defined above, this condition
is immediately satisfied and is nothing but Korn’s inequality, that is, there
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exists a constant a > 0 such that

/Q e : e@dz > afv|? Vv eV, (4.9)

which holds for V = (H}(€2))"(n = 2, 3) but also for more general bound-
ary conditions (see Duvaut and Lions (1972)). The second condition is
known as the inf-sup condition, which will be our terminology, but also as
the Babuska-Brezzi condition or even the Ladyzhenskaya—Babuska—-Brezzi
(LBB) condition. It can be written as,

b
inf sup (v,9)

2 > ko > 0. 4.10
veveeo lullviiglo = ™° (410)

This looks somewhat abstract and cumbersome. It means in fact that the
operator B from V into @', the dual of V, is surjective. In a more general
form it can be written as

inf sup b(v.q) > ko >0, (4.11)
vev qeQ lullv llallQ) xer 5t
where
ker B! = {g| b(v,q) = 0,Yv € V} (4.12)
and the quotient norm ||g|| g/ ker pt is defined by
llallo/ ke Bt = qoeiigBt lig + qollq- (4.13)

Condition (4.11) then means that the operator B has a closed range in Q’
and the p part of the solution is then only defined up to an element of ker B®.
In our case, we have Q = Q' = L?(Q) and the operator B is the divergence
operator from V into L2(Q2). With V = (H}(f2))?, it is not surjective and
ker B® = ker(grad) is the subspace of constants. Pressure will then be
defined up to a constant. Whenever we have Neumann conditions on part
of the boundary, we recover surjectivity and hence uniqueness.

4.2. The dual problem

It is usual, when a Lagrange multiplier is introduced to enforce a constraint,
to consider the dual problem, that is the problem transformed into this new
variable. It is obtained by changing the inf-sup problem (4.7) into a sup-
inf problem through reversing the order of operations and eliminating v
by performing the minimization in v for a given ¢. In our case, an easy
calculation shows that the dual problem can be written as

sup%/ A lgradg-gradgdz - / Alf . gradgdz, (4.14)
q Q Q
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for which the optimality condition is
div A~ lgradp =divA~lf. (4.15)

As we shall see later, the properties of the discrete dual problem play a
crucial role in the analysis of the numerical scheme.

4.8. The discrete problem

We are now in a position to consider discretizations of problem (4.6). To do
so, we introduce finite-dimensional subspaces V), C V and @, C Q and we
consider the discrete analogue of (4.6),

{ a(’ll,h,‘vh) + b(vhaph) = (.favh), V’Uh S Vha (4 16)
b(uh’Qh) = (ga Qh), VQh € th )

where, as in (4.6) g will be zero in most cases. For such a conforming
approzimation, the general theory of Brezzi (1974) (see Brezzi and Fortin
(1991)) applies directly. It relies on the discrete version of conditions (4.9)
and (4.11). The first condition is trivial in the present case and follows
directly from the inclusion V;, C V. To consider the second condition, we
first identify Q, and @}, just as we identified Q and Q’, we let B;, = divy,
be the discrete divergence operator from V) into @) associated with the
restriction of the bilinear form b(-, -) to these spaces and let B} = grad,, be
its transpose,

(divh %h, gn) = b(un, gn) = (un,gradsgn), un € Vi, gn € Qn.  (4.17)

In general, divy, is not the restriction of div to V. Indeed, from equation
(4.17) we have

divy up = Py, divu,, (4.18)

where Pg, is the projection operator from @Q onto Qp. As we shall see

later, in many actual cases divy, up, will be some average of divu,. This also
implies that the kernel of the discrete gradient grad,,

kergrad, = {qn € Qn | b(vr,qn) = 0,Vvr, € V3 }, (4.19)

is not necessarily the one-dimensional subspace of constants. Cases will arise
in which nonconstant functions have a zero discrete gradient. Such cases will
be pathological and will require special care if they are not simply avoided.
We can now state the second condition as

. b
inf sup (0, gn) > kp > ko >0. (4.20)
VhEVL ah€QM ”vh”V”(Ih”Qh/kergradh

The first part (> kj) is trivial in a finite dimensional setting. The really
important requirement is the existence of a constant ko independent of h.
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Given coercivity and the discrete inf-sup condition (4.20) we can apply
the theory of Brezzi (1974) to obtain the existence and uniqueness of (up, pp)
in V, and Qp/ kergrad;, and we can state

Theorem 4.1 Let (u,p) be the solution of problem (4.6) and (wn,pp) be
the solution of the discrete problem (4.16). We then have the error estimates:

llw — unllv (4.21)

< Cu(1/ay1/k) { int u—valy + st - aillo},

lp — Pull @/ xer(grad,) (4.22)
< Cy(1/a,1/k3) inf ||lu-—wv inf - .
< Co(1/e 1/RD){ inf u—wally + inf llp— arllo}

It must be remarked that both constants C; and C; depend on 1/a but
that C depends on 1/k2, which makes the approximation of pressure much
more sensitive to a bad behaviour of k. In many cases where kj is not
bounded from below but depends on h, it is customary to see acceptable
approximate velocities but a disastrous approximate pressure field. We shall
develop later another approach to clarify this point. Before doing so, we
shall present a criterion for the inf-sup condition and consider some classical
examples.

4.4. The inf-sup condition and criteria

The question that now arises is to find some way of checking condition
(4.20). Although this is not the only possibility, a quite convenient way is
through a criterion introduced in Fortin (1977) which reduces the question
to the construction of a suitable interpolation operator. The criterion can
be found in a general setting in Brezzi and Fortin (1991). For the present
purpose, we consider a special, albeit general enough case. As a starting
point, we assume that the continuous inf-sup condition (4.11) holds, which
is indeed the case for the problem considered. We then prove:

Lemma 4.1 Suppose that we can build an operator II; from V into V,
satisfying

b(Ilpv —v,qp) = O Vg € Qp, (4.23)

[Mavlly < cllvllv, (4.24)

with a constant ¢ independent of h. Then the discrete inf-sup condition
(4.20) holds



252 M. FORTIN

Proof. Indeed we have from (4.11), as Qp, C Q,

b('l’,Qh)
——— 2 k er Bt- 4.25
S0 ol 2 0llgnllQ/ xer Bt (4.25)

But by (4.23) and (4.24), we may write
b(vh, qn) b(Ilv, gp)
sup ————= 2 sup ———~ 4.26
vhel‘)/;. florflv — vev [(Hpvlly (4.26)
lb(vy fIh)

ko
> — t,
- vev P ”v“V ety c ”qh”Q/kel'B

hence the result. O

The use of Lemma 1 requires two things: finding a suitable class of el-
ements, constructing I1, which satisfies (4.23) and then checking that this
operator is uniformly continuous in A, that is (4.24). This last requirement
is generally purely technical although establising it could be quite intricate.
It is also worth stating here an important fact about the operator I1;,.

Lemma 4.2 If the condition (4.23) holds, then
ker B}, C ker BY, (4.27)
that is there are no spurious zero-energy mode.

Proof. This is easily inferred from (4.23). Indeed we must show that any
gn € ker B}, that satisfies

b(vn,qr) =0 Yo, € V3, (4.28)

also satisfies
b(v,qn) =0 Vv eV (4.29)

But &(v,qn) = d(IIv, q;) = 0 and the result is immediate. O

Let us come back to the problem of constructing the operator II,. This
is often done in practice by starting from a standard interpolation operator
and by correcting it by some local operations. The following lemma provides
a general procedure to do so.

Lemma 4.3 Let us suppose that the finite element approximation has
been chosen so that Proposition 2.2 or some analogous result applies with
some suitable interpolation operator II,, satisfying the continuity require-
ment,

IMolly < e ljvlly, VveV (4.30)
We also suppose that there exists a second operator 112 € L(V, V,,) satisfying
(I - M)vlly < exllvllv, Yvevy, (4.31)
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/Q div(v—v) gndec = 0, VweV, Vgn€Qn,  (4.32)

where the constants ¢; and ¢y are independent of A. Then the operator II;
defined by

Myu =1Iu + Hz(u — Hl'u.), ucy, (4.33)
satisfies (4.23) and (4.24).
Proof. 1t is easy to see that condition (4.23) holds. Indeed

b(llpw,qn) = b(Il2(w — Miw), gr) + b(Ilyw, gp)
= b(w - Iw, qh) + b(l'Ilw, qh) (4.34)
= b(w’ qh)‘

On the other hand,
IMpwlly < [M2(w - hw)llv + [Thw|lv < (e1 + e2)jwllv (4.35)
so that condition (4.24) holds. O

In many cases, II; will be the interpolation operator of Clement (1975)
(cf. Proposition 2.2) in H1() for which we have

YR - Mo < clloliq, r=0,1. (4.36)
K

Taking r = 1 in (4.36) and using the triangle inequality
|Molly < llv — M|y + [jvllv (4.37)
yields (4.30).

4.5. The matriz form of the discrete problem

Suppose that we are given a basis {¢) }1<i<n of V and a basis {"/’I?}lsks M
of Q. We can define the matrices

B = b(8Y, v2). (4.39)

Matrix A is positive definite while B is a rectangular matrix. We shall also
need later the mass matrices

MR = W8, ¥ (4.41)
We now consider the discrete problem (4.16) and we write

up =Y, Ui¢Y,
{ o3 Prgd (4.42)
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Using this notation, the discrete problem may be written as

(; g)(g)=(§) (4.43)

We therefore have to solve a symmetric indefinite system. It is possible, as
A is invertible, to eliminate U from this problem to get a problem in P
only:

BA™B'P =G — B(A)"'F. (4.44)

We shall come back later to numerical methods adapted to this problem.

4.6. Eigenproblems associated with the discrete inf-sup condition

It should be clear from the earlier analysis that the discrete inf-sup condition
is closely related to the behaviour of the dual problem, in particular the
discrete dual problem (4.44). Let us indeed go back to (4.20) and let us
rewrite it in the notation of the previous subsection. We get

| Bv.Q)  _
Ven Gen, TAV, VIVAMAQ, Q)72 ~ ™+ 449

where we have made the assumption that (AV, V') 1/2 is employed as a norm
on V,,. This involves a Rayleigh’s quotient for the singular value decompo-
sition of the matrix B with the norms defined by A and M@ on V, and
@, respectively. This can be reduced to solving the generalized eigenvalue
problem,

BATB'Q, = i2M€Q,. (4.46)

The square root of the smallest eigenvalue is nothing but the constant kj of
(4.20) while the square root of the largest one is the norm ||b|| of the bilinear
form b(-,-). For more details, we refer to Brezzi and Fortin (1991). This
argument shows that all kinds of behaviour is possible: the correct case is
when the eigenvalues are bounded away from zero. When some eigenvalues
vanish with h, part of the solution will be spoiled. We refer to Malkus
(1981) where these eigenvalues have been computed numerically for some
elements. A more complete discussion of similar eigenvalue problems and
of the condition number of associated systems can be found in Fortin and
Pierre (1992).

5. Finite elements for incompressible problems

In this section, we shall present, in a general framework, some classical
examples of finite element approximations to the equations of incompressible
materials. The problem is a priori simple. We are looking for a velocity
field in H}(2))?, which implies that all classical constructions hold. In the
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same way, the pressure which is sought only in L?(f2) can be approximated
by a very wide choice of elements. Standard conforming elements (built
for H1(Q)) will evidently be suitable and we shall say in that case that
we have a continuous pressure approximation. On the other hand, we are
allowed to avoid any continuity of the discrete pressure at interfaces and to
use discontinuous pressure approrimations. As we shall see in the examples,
this last case will ensure a better conservation of mass. The difficulty which
arises is that our approximations of velocity and pressure cannot be chosen
independently but must satisfy a compatibility condition: the discrete inf-
sup condition (4.20). Our goal will therefore be to build approximations
satisfying this condition while preserving simplicity and efficiency.

5.1. Ezact incompressibility

A natural idea when one comes to the problem of approximating divergence-
free problems is to try to enforce the constraint strongly, that is, at every
point. This can be done quite easily. Indeed, given a choice of a space V},
for the approximate velocities, it would be sufficient to take @ so that it
contains div V}, to ensure that the divergence of the solution is zero every-
where. Just as many simple ideas, this one leads to a dead-end. What hap-
pens, at least for low-degree elements, is that the solution is overconstrained
and we have a locking phenomenon, that is the only function satisfying the
divergence-free constraint is the function identically zero. This is the case
in the following simple example.

Example 5.1 (The P,—P, approximation.) We approximate velocity by
the simplest finite element: piecewise linear functions on triangles. The
divergence is then a subspace of the space of piecewise constants so that using
this space for @, enforces the divergence-free condition exactly. A simple
count, using Euler’s relations on a triangulation, however, shows that, on a
general mesh, the number of constraints is larger than the number of degrees
of freedom and that we have locking. It must, however, be noted that on
a composite mesh where triangles are obtained by dividing quadrilaterals
by their diagonals (Figure 5.1), a linear dependence appears between the
constraints so that non-trivial solutions exist. Nevertheless, the resulting
approximation does not satisfy the discrete inf-sup condition. O

Example 5.2 (Quadrilateral elements.) The reader may easily check that
the same locking phenomenon will appear on rectangular elements (on a
regular grid for instance) if one tries to impose an ezact divergence-free
condition to a bilinear or biquadratic approximation of velocities. O

Example 5.3 (Second-order triangular elements.) The counting proce-
dure also shows that, on a general triangular mesh, piecewise quadratic
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Fig. 5.1. A quadrilateral subdivided by diagonals.

divergence-free elements exist but require far too many triangles to be ef-
ficient. However, using the same mesh as in Figure 5.1, it is possible to
get a divergence-free approximation satisfying the discrete inf-sup condi-
tion; but it is then necessary to filter a spurious mode from the pressure
approximation. We refer to Brezzi and Fortin (1991) for details. O

Remark 5.1 The previous example is directly related to the composite
approximation of Fraeijs de Veubeke and Sander (1968) for plate problems
(see also Ciavaldini and Nédélec (1974)). Those problems indeed require C 1-
continuity, and a composite element of degree three can be built on the mesh
of Figure 5.1. Taking the curl of this approximation yields a divergence-free
function, which is piecewise quadratic and C%-continuous. The construction
is therefore based on the approximation of the stream function in HZ(f).
It must be noted that no similar composite constructions are known for
three-dimensional problems. O

Remark 5.2 (Higher order methods.) We would like to recall briefly the
statement of a basic result by Scott and Vogelius (1985) which, roughly
speaking, says: under minor assumptions on the decomposition 7}, (in tri-
angles) the pair V}, = (£})?, Qn = Li_, satisfies the inf-sup condition for
k > 4. This, in a sense, settles the matter as far as higher order methods are
concerned, and leaves only the problem of finding stable lower order approx-
imations. It must, however, be noted that some instabilities might in certain
cases remain in the pressure, although they could be filtered out a posteriori.
In fact the restrictions to which we alluded earlier are that the sides of the
triangles should not be collinear as in the special grid of Figure 5.1, which
reduces the number of linearly dependent constraints, leaving some of the
pressure degrees of freedom unused. This being said, the use of high-order
metnods 18 not very popuiar as they require the delicate manipulation ol
high-degree polynomials. It has however gained a new popularity.

We have seen that exactly divergence-free methods are delicate, requiring
high-order elements or special grids. This leads us to try enforcing the
divergence-free condition only approximately, in the hope of obtaining sim-
pler constructions. We have already noted (cf. equation (4.17)) that we have
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to deal with a discrete divergence operator divy, which is the projection on
Qp, of the divergence operator. If Q5 is smaller, or V}, larger, this projection
will effectively weaken the divergence-free condition. The effect will be, on
one hand, that the verification of the discrete inf-sup condition (4.20) will
be easier. On the other hand, the accuracy of the approximation would
evidently be impaired by taking @ too small so that we shall privelege the
enrichment of V}, as a potential cure to our difficulties.

5.2. Simple constructions for approximately divergence-free elements

We shall now introduce a simple and general way of satisfying the inf-
sup condition. The basic idea is indeed very simple: the discrete inf-sup
condition involves a supremum over vy € V3. Making the space V}, larger
will make the supremum grow and will intuitively make the condition easier
to fulfil. This technique can be further extended to composite elements but
for the sake of simplicity, it is worth considering the simpler case first.

The idea of enriched elements has been used several times, starting with
Crouzeix and Raviart (1973) for discontinuous pressures and Arnold, Brezzi
and Douglas (1984) and Arnold, Brezzi and Fortin (1984) for continuous
pressures. We present it in the general form given by Brezzi and Pitkiranta
(1984) (see also Stenberg (1984)). It consists essentially in stabilizing an
element by an enrichment of the velocity field by bubble functions, that is
functions having their support restricted to one element and vanishing on the
boundary of this element. The simplest bubble function is the conforming
bubble function, denoted b3 k. It is a polynomial function of degree three. If
we denote by Aq, Ag, A3, the barycentric coordinates of the triangle we then
have b3 k = A1A2A3. We associate with the finite element discretization
Qn C L?(Q) the space

M(grad Q) = {B\ Bik = b3 kgrad gp\x for some g € Qn}. (5.1)

In other words, the restriction of a function 8 € M(grad @) to an element
K is the product of the Ps-bubble functions b3 x and the gradient of a
function from Qp|k.

Remark 5.3 Notice that the space M(grad Q) is not defined through
some basic space M on the reference element. This can be easily done, if
one wants to, in the case of affine elements, for all the reasonable choices of
Q#n. However this is clearly unnecessary: if we know how to compute g5 on
K we also know how to compute grad g, and there is no need for a reference
element. O

We now turn to prove two results, concerning continuous or discontinuous
pressures.

Proposition 5.1 (Stability of continuous pressure elements.) We suppose
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Fig. 5.2. The MINI element.

that there exists II; € £(V,V},) satisfying (4.30), that we have Q; C H()
and that M(grad @) is defined as in (5.1). Then the pair (V},,Q4) is a
stable element, in the sense that it satisfies the inf-sup condition.

Proof. We shall use Lemma 4.3. We already have our operator II; by as-
sumption. We only need to construct IIo. We define II; : V — M(grad Qy),
on each element, by requiring

{ Iyv|x € M(grad Q)|k = b3 kgrad Qy|k,

/ (v —v) -grad g, dz =0, Vg, € Qilk. (5.2)
K

Problem (5.2) has obviously a unique solution. It is clear that Il satisfies
(4.31) of Lemma 4.3. Finally (4.30) follows by a scaling argument. We thus
have the desired result. O

Corollary 5.1 Assume that Qp C @ is any space of continuous piecewise
smooth functions. If (£1)? ® M(gradQy) C V; then the pair (Vi,Qs)
satisfies the inf-sup condition.

Proof. Continuity and piecewise smoothness imply that @ C H!(Q2). The
condition (£})? C V;, implies the existence of II; satisfying condition (4.30),
and condition M(grad @) C V4 is by hypothesis. Hence we can apply
Proposition 5.1. O

These results apply, for instance, to the enriched Taylor-Hood element
and to the families introduced in Arnold, Brezzi and Fortin (1984).

Example 5.4 (The MINI element.) The first family is defined by
Vh = (‘CI];; D Bk+2)21 Qh = ‘Cllu k > la (53)

where By o is defined as in (2.14). The simplest of these elements is the
so-called MINI element. It is obtained by taking k = 1 in (5.3). This means
that a cubic bubble, (k+2 = 3), is added to a simple piecewise linear approx-
imation of velocity while pressure remains piecewise linear. This element is
sketched in Figure 5.2. The corresponding equal interpolation element,
using piecewise linear approximations for both velocity and pressure is not
stable in the sense that it does not satisfy the inf-sup condition. This is, in
fact, the case for all equal interpolation approximations. 0O
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Fig. 5.3. Enriched Taylor-Hood element.

Example 5.5 The second family is defined by
Vi=(LL®Bri1)?, Qun=LL_,, k>2. (5.4)

In the simplest case, (k = 2), a cubic bubble is added to a piecewise quadratic
approximation of velocity while pressure is approximated by piecewise linear
functions as in the previous example. This element is sketched in Figure 5.3
Without bubbles, this element is known as the Taylor—Hood element and it
is already stable. The proof of this will be considered later, as it requires a
special technique. O

We turn now to the case of discontinuous pressure elements. Many reasons
may lead us to consider such approximations. Probably the most important
one is probably the better approximation to the equation of conservation of
mass generated by such elements, in comparison with dicontinuous pressure
elements. In fact, whenever (); contains piecewise constant functions, the
divergence-free condition contains, as a particular case, the condition

/ divonde =0, VK €T, (5.5)
K

which means that the average divergence is null on every element or, equi-
valently, that mass is conserved on every element. In the case of continuous
pressure approximations, the divergence-free condition is also averaged, but
the averages cannot be reduced to a local conservation property. In hard
cases this may have important consequences (Fortin and Pelletier (1989)).
Discontinuous pressures are also important because they can be combined
with a penalty method to eliminate pressure as an unknown, as we shall see
in Section 8. Before stating the general result, we shall consider a simple
special case which will be the basis for the general setting.

Example 5.6 (The P,—Fp and Q2—Qq elements.) These are the basic and
simplest stable discontinuous pressure elements. We shall only. consider the
triangular case in detail as the quadrilateral case can be treated in essentially
the same way. The element by itself has no particular property except that
pressure is approximated with very low precision. If we refer to estimates
(4.22) and (4.23), this implies that we do not achieve the full accuracy
expected from second-degree polynomials employed to approximate velocity.
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Fig. 5.4. The P,—-P, element.

The accuracy of the element is thus not optimal and it is not recommnded
in practice.

To check the inf-sup condition, we shall use Lemma 4.1 and build an op-
erator II, satisfying the conditions (4.23) and (4.24). To do so we start from
the standard interpolation operator II; of Proposition 2.2 and we modify the
midside values so that on every side S of K, the resulting new interpolant
II,v satisfies

/ahm-wﬁu=o Yo eV,i=1,2, (5.6)
S

where the v; are the components of v. Formally, we can work again with
Lemma 4.3 and define, on every element K, IIz), by

Ilov € P2(K),
Mpv;, (M) =0, for any vertex M of K,

(5.7)
/ v ds = / vds, for everyside S of K.
) )
One then defines II; by
v = Mv + Iz(v — Hv). (5.8)
It is clear that that II; satisfies condition (4.23) for we have
/ div (IIv —v)dz = / (IIgv —v) -nds =0. (5.9)
K 8K
As to the continuity property, it follows by a scaling argument as
Mav)y x = 0], 4 < (2,60)[8]l, & (5.10)

< c(2,00)(hg' |vlo,x + |v|1,x),

where ¢(2,6p) is a constant, depending on the degree of the polynomials
employed, which is 2, and on the minimum angle of the mesh as in (2.17).
Using this result and the properties of II; yields the result. O

Proposition 5.2 (Stability of discontinuous pressure elements.) Let us
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suppose that there exists II; € L(V,V},) satisfying
/ div (v - hv)dz =0 VK €T (5.11)
K

and that M(grad Q) C V}, as defined in (5.1). Then the pair (Vj,Q4) is a
stable element, in the sense that it satisfies the inf-sup condition.

Proof. We shall proceed by applying Lemma 4.3. We take I1; satisfying
(5.11) as operator II;. We are not going to define II; on all of V', but only
in the subspace

V°={v|v€V,/div'udx=0, VKeTh} (5.12)
K

For every v € V? we construct Il;v € M(grad Q) by requiring that, on
each element K,

{ yv|x € M(grad Qr)|x = b3 kgrad Qu |k,

/K div (TIIv — v) godz =0, Vg, € Qilk. (5.13)
Note that (5.13) is uniquely solvable if v € -V since the divergence of a
bubble function always has zero mean value (hence the number of nontrivial
equations is equal to dim(Qn|x) — 1, which is equal to the number of un-
knowns; the nonsingularity then follows easily). It is clear that IIs, as given
by (5.13), will satisfy (4.31) for all v € V°. We have to check that

[Tgv]l1 < c v, (5.14)

which actually follows again by a scaling argument. It is then easy to see
that the operator

II, = fIl +II,(I - ﬁl) (5.15)
satisfies the condition of Lemma 4.3 and the inf-sup condition follows. O

Corollary 5.2 (Bi-dimensional triangular case.) Let us assume that Q; C
Q is any space of piecewise smooth functions and suppose that

(£3)* © M(grad Q1) C V.
Then the pair (V4, Q) satisfies the inf-sup condition.

Proof. The condition (£1)? C V;, implies that we can construct II; as in
Example 5.6. On the other hand we have M (grad Q) C V}, so that we can
apply the previous Proposition 5.2. O

Propositions 4.1, 4.2 and 4.3 require a few comments. They show that
almost any element can be stabilized by using bubble functions. For contin-
uous pressure elements this procedure is mainly useful in the case of triangu-
lar elements. For discontinuous pressure elements it is possible to stabilize



262 M. FORTIN

® ®

Fig. 5.5. The Crouzeix—Raviart element.

. &~

Fig. 5.6. The Q2—P; element.

elements provided that they are already stable for piecewise constant pres-
sure field. Examples of such a procedure can be found in Fortin and Fortin
(1985a). Stability with respect to piecewise constant pressure implies that
at least one degree of freedom on each side or face of the element is linked
to the normal component of the velocity (Bernardi and Raugel (1981) or
Fortin (1981)). Let us now consider a few examples of discontinuous pres-
sure elements.

Example 5.7 (The Crouzeix and Raviart element.) We take Q, to be the
space of piecewise linear discontinuous functions. The previous construction
then consists in adding cubic bubbles to a piecewise quadratic approxima-
tion of the velocity. This element is sketched in Figure 5.5. It provides
second-order accuracy and is probably one of the best choices among stable
triangular elements. O

This element has a rectangular (or even isoparametric) counterpart which is
worth presenting. One interesting fact is that the triangular and rectangular
versions are compatible and can be used inside a mixed mesh.

Example 5.8 (The Q2—P; element and generalizations.) Let us consider
an approximation of the velocity by a full biquadratic approximation and
of the pressure by piecewise linear discontinuous functions. It can then be
checked that the element is stable using the same kind of argument as in
Corollary 5.2. This element, sketched in Figure 5.6, is one of the most pop-
ular elements for the approximation of incompressible flows. Although the
previous results, as stated, can only be applied to the triangular case, the
rectangular case and its isoparametric counterpart can be handled along the
same lines. The idea is that once the constant part of the pressure is con-
trolled by integrals on the boundary of the element, one may use internal
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Fig. 5.7. Three-dimensional Crouzeix—Raviart element.

nodes to control the remaining part. In the case of a full biquadratic Q-
approximation of the velocity, we have two internal degrees of freedom so
that a P, pressure field can be used, but not a bilinear );, as this would
require three internal nodes. Evidently, one could enrich the approximation
of the velocity to accommodate any degree of approximation of the pressure
(Fortin and Fortin 1985a). It can be easily checked that for £k > 3 a Q
approximation of the velocity can be combined with a Pj_; or a Qr_1 ap-
proximation of the pressure. The case of k = 1 is pathological and will be
discussed later. O

Example 5.9 (Three-dimensional tetrahedral discontinuous pressure ele-
ments.) The same arguments can be directly translated to the three-dimen-
sional case (cf. Fortin (1981) or Stenberg (1987)). The main difference is
that, in order to control the piecewise constant part of the pressure, one
needs to use degrees of freedom on the faces of tetrahedra rather than on
the edges. The equivalent of the operator II; requires the integration of
fluxes on faces; this requires the use of polynomials of degree greater than
or equal to three if we only want to enrich by internal nodes. However,
there exists a three-dimensional Crouzeix and Raviart element as sketched
in Figure 5.7. It is obtained by enriching a second-degree element (with ten
degrees of freedom on vertices and on the edges) by one cubic bubble on
each face plus one fourth-degree internal bubble. Moving to higher degree
polynomials, one may similarly build enriched elements with any order of
accuracy. Finally with polynomials of degree higher than or equal to nine,
one may build exactly divergence-free elements, as in the result of Scott and
Vogelius (1985) discussed earlier. O

Example 5.10 (Three-dimensional hexahedral discontinuous pressure ele-
ments.) It can easily be checked that the three-dimensional Q2—P; element
sketched in Figure 5.8 is also a stable element. The (2—Q; element is not
stable. For k > 3, a Q;—P;_1 approximation is stable and for k > 4, so will

QrQr-1. O
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Fig. 5.8. Three-dimensional Q;—P; element.

5.8. Nonconforming elements

We have just seen that it is possible to build approximately divergence-free
approximations by enriching the approximation of the velocity. A different
way to obtain stable approximations is to employ nonconforming elements,
that is elements for which continuity requirements at interfaces have been
relaxed. Using nonconforming elements implies that the variational formula-
tion must be modified. In the Stokes problem, for instance, one must define
discrete versions of the bilinear forms a(-,-) and b(.,-),

ap(u,v) = zﬂ; /K ) : ef) dz, (5.16)
br(v,q) = ;/quivvdx. (5.17)

These discrete forms are defined even for functions which are discontinuous
at interfaces, as only derivatives inside elements are involved. The discrete
problem can now be written

{ an(un, vp) + bp(vn,pn) = (F,v8), VYon € W, (5.18)
br(un,qn) =0, Vgp € Qp. . ’

It is then possible to perform an error analysis of the problem. We refer to
Brezzi and Fortin (1991) or to the original work of Crouzeix and Raviart
(1973) for precise results the development of which is beyond the scope of this
article. Let us simply say that nonconformity introduces additional consis-
tency terms in the error analysis. These terms have to be properly bounded
and the key for this is the generalized patch-test: ‘for a nonconforming ap-
proximation of degree k to be optimal with respect to error estimates, the
moments [ vpPx—1 ds, must be continuous at any interface S, for any poly-
nomial pr_; of degree k — 1’ . The simplest of these elements is described in
the following example. It was introduced in Crouzeix and Raviart (1973).
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Fig. 5.9. The nonconforming P, element.

Example 5.11 (The nonconforming P; element.) We consider an approx-
imation of the velocity by functions which are piecewise linear but are contin-
uous only at midside points at element interfaces. This implies that [;vds
is continuous as the midpoint rule is exact for polynomials of degree one and
the patch—test is therefore satisfied. The pressure is piecewise constant and
the element is sketched in Figure 5.9. This is the simplest first-order accu-
rate element for incompressible problems. As pressure is discontinuous, one
has local conservation of mass. The three-dimensional analogue is readily
built, using values at the barycentre of the faces as degrees of freedom. O

It is also possible to construct higher order nonconforming elements. This is
easily done for odd degree polynomials. One can find, for instance, a third-
order nonconforming element in the paper of Crouzeix and Raviart (1973)
in which a polynomial of degree three, enriched by bubbles of degree four,
is employed. Continuity is then required at three Gauss-Legendre points on
each element side. This implies that the element passes the correct patch
test and the values at those Gauss—Legendre points can be used, with the
addition of some internal nodes, as degrees of freedom. For even degree poly-
nomials, a pathology arises and a different way must be found, as described
in the next example.

Example 5.12 (The Fortin—Soulié nonconforming element.) It is easy to
see that, in the two-dimensional case, the construction of a nonconforming
element of degree two (or more generally of even degree), leads to unexpected
difficulties. To satisfy the patch test and obtain the correct accuracy, one
should ensure continuity at the two Gauss—Legendre points on the sides of
elements. The trouble is that these six points cannot be used as degrees of
freedom for a polynomial of degree two as one would like to do following the
previous example: there exists a nonconforming bubble which vanishes at all
six Gauss—Legendre points. It is expressed, in barycentric coordinates, as

bne(A1, A2, Az) = 2 — 3(A% 4+ 22 + \2). (5.19)

The way around this difficulty is to construct second-order nonconforming
methods in the same way as one built the element of Example 5.5: by en-
riching a standard conforming element of degree two by the nonconforming
bubble (5.19). We refer to Fortin and Soulié (1983) for details. The degrees
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of freedom are the same as in a Crouzeix—Raviart element and only the bub-
ble function has to be modified in the code, essentially a one line change.
The advantage is that now only polynomials of degree two have to be manip-
ulated. A three-dimensional version has also been derived in Fortin (1985).
O

Finally, let us note that it is possible to build quadrilateral nonconforming
elements along the same lines, that is by enriching a standard element by
a function satisfying the patch test. A @; nonconforming element can,
for example, be obtained by adding to the standard conforming element a
function of the form ¢(z,y) = zy on | — 1,1[x] — 1,1[ (Fortin and Soulié,
1983). It is also possible to add a function of the form z? —y —y? to a P,
approximation (Rannacher and Turék, 1992).

5.4. Taylor-Hood elements and generalizations

There exists another class of stable elements which is not covered by the
previous analysis and which are worth a presentation. This class contains
the Taylor-Hood element and its generalizations (Hood and Taylor, 1973;
Bercovier and Pironneau, 1977; Brezzi and Falk, 1991). They essentially
consist of taking, for triangular elements

Ve=LL, Qn=CL}_,, (5.20)

that is continuous pressure elements with the pressure one degree lower than
the velocity. This yields the right order of accuracy as one only approximates
pressure in L2(€2). The corresponding quadrilateral elements are also widely
employed and the three-dimensional counterpart is quite popular. Because
it contains an important idea, Verfiirth’s trick, we rapidly sketch the proof
of stability for the original Taylor-Hood elemencorresponding to k = 2 in
(5.20). The proof proceeds in two steps, the first being very general.

Lemma 5.1 Let Q2 be a bounded domain of R™ with Lipschitz continuous
boundary. Let Vi, C (H}(Q))? = V and Q, C H'(). Suppose that there
exists a linear operator II9 from V into V} and a constant ¢, independent of
h, such that

lon —vllna < X (BT 0lER) 2, WweVir=01  (5.21)
K
Then there exist two positive constants ¢, and ¢y such that for every g, € @y,
/Q qn divop dzx \ . \1/2
v A o T cillgnllo/r — c2 Xk: (hilgradanllix) " - (5:22)

We refer to Brezzi and Fortin(1991) for the proof. Let us remark again that
this is general and holds for any continuous pressure approximation. Now
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let us return to the special case of the quadratic—linear approximation of
Taylor and Hood.

Lemma 5.2 (Stability of the Taylor-Hood element.) Let V; = (£3)? N
(H}(2))? and Qp, = £]. Then, if any element of 73 has no more than one
edge on the boundary, there exists a positive constant cg such that for every

qn € Qn,

/ gr divvp dz
sup

1/2
z( h2|qn? ) : (5.23
. A PR 2 Ficlanli x )

Proof. We shall prove the result by constructing a suitable ©;. Let g, € Qg
be given and let K be an element of 7;,. We define 9, on K by

{ p, = 0 at the vertices of K,

v, = —t.(grad gy - t.)le)?, (5.24)

at the midpoint of every edge e of K, denoting by |e| the length of e and
by t. the unit tangent vector to e, with some chosen orientation. One easily
checks that

onllix < chklgnlik- (5.25)

Now, we use a quadrature formula, which is exact for any polynomial of
degree 2,

f pater e = P o), (5.26)

where the sum is taken over the midpoints M of the edges of K. We then
have, with the choice (5.24),

/qhdivi}hdz = —/gradqh-t‘yhdx
Q Q
= —EK/ grad gy, - v dzx
K

= —ZKZM(grath-ﬁh)(M)%(K) (5.27)
= Yk mlgradgs- telzlelzg‘(%g2

v

CEy hillgrad gulf x,

where in the last inequality we have implicitly used a nondegeneracy condi-
tion |e| > ohk and the hypothesis that two sides of K are internal so that
¥y, is defined from grad gy, - t. in at least two directions on every triangle.
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From (5.25) and (5.27) we get

/Qqhdw'vhdflf . Sk hz}{llgradthlﬁ,x

T, : = (5.28)
(zk B llgrad gull2 «

which is the desired result. O

We can now prove

Proposition 5.3 (Stability of the Taylor-Hood element.) The pair V}, =
(LH2N (HY())? and Qp, = L} is a stable element for the Stokes problem,
that is it satisfies the discrete inf-sup condition.

Proof. We multiply the inequality (5.22) by c3 and (5.23) by c2 and we add
them to get

divvy dz
(c3 + ¢c3) sup /Qqh "

2 c1¢3|(qnllo/r 5.29
VhEV: ”vhlll ” ”/ 3 ( )

which is the desired condition. O

This idea of combining a ‘bad inequality’ -like (5.22) and a ‘good inequality
in a bad norm’ -like (5.23) is due to Verfiirth (1984). It can be applied to
other situations, for example to the study of stabilized methods presented
in the next sections.

6. The Q,—P, element (or ‘what might go wrong’ )

We have introduced, in the previous sections, the discrete inf-sup condition
(4.20). It is important in practice to know what should be expected if this
condition is not satisfied. It is clear that the trouble will arise in the dual
problem, that is, with the pressure. The most classical of difficulties is
the appearance of a spurious zero-energy mode in the dual problem. All
functions in ker(grad,) are zero-energy modes in the dual problem. Those
which are nonconstant are known as chequerboard modes because of the first
discovered case:

Example 6.1 (The Q;-P, element and the chequerboard model.) We con-
sider a Q1—Fp approximation, that is we approximate velocity by bilinear
elements and pressure by piecewise constants. Moreover, we restrict our-
selves to a regular and rectangular mesh. Then, if we colour the rectangles
like the squares of a chequerboard, there exists a spurious zero-energy mode
taking value 0 on white squares and value 1 on black squares (Figure 6.1).
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Fig. 6.1. The chequerboard mode.

This mode is defined up to a multiplicative constant and often manifests
itself by huge values. In particular, a small displacement of a node by a
value of € transforms the zero eigenvalue into an O(e) eigenvalue, making
an O(1/¢) chequerboard mode to appear. O

Other examples of zero-energy modes are met in equal-interpolation ap-
proximations, that is approximations in which pressure and velocities are
approximated by polynomials of the same degree. Most of the time, but not
always, they are strongly mesh-dependent and are present only on special
regular meshes. The exactly divergence-free element of Example 5.1 on the
crossgrid mesh of Figure 5.1 also suffers from exactly the same chequerboard
mode as the @Q1—Fy element.

This, however, is not the only way in which things can go wrong. Another
way is that some nonzero eigenvalues become vanishingly small when h
decreases, implying that the constant in condition (4.20) is not bounded
from below and goes to zero with h. The result is at best a loss in the order
of convergence or, worse still, a total loss of convergence. Again, the Q-
P, element provides us with the simplest example. If we consider a regular
rectangular mesh and compute the eigenvalues of the dual problem (Malkus,
1981), we see that a large number of them become smaller as h decreases.
They can be associated with eigenvectors consisting of a restriction of the
chequerboard mode described above to a 2 x 2 patch of elements. In all cases,
a sign of instability first appears in the pressure. It is only in very severe
cases that velocities are polluted in a visible way. Derivatives of velocities are
however likely to suffer so that computing the vorticity is a good indicator
of trouble. To make things still better, it is possible to build special meshes
on which the Q1-P; approximation is stable. One of them is presented in
the next figure and was introduced by Letallec and Ruas (1986). It is also
possible to show that on a regular mesh, formed of 2 x 2 patches of elements,
things are not so bad as would appear from previous considerations: velocity
converges at the right order and pressure can be filtered by projecting it on
a proper subspace. A proof can be found in Brezzi and Fortin (1991).
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o—  J

Fig. 6.2. A special mesh for Q,-Fp.

7. Stabilization techniques

Up to now, we have obtained stable finite element pairs for the approxima-
tion of the velocity and the pressure by a clever choice of polynomial spaces.
There is, however, another possiblity which has received much attention in
recent years: stabilization can be achieved by modifying the variational for-
mulation of the problem. The idea was introduced by Brooks and Hughes
(1982) for the stabilization of finite element methods for first-order advec-
tion problems. It was later extended in Hughes, Franca and Balestra (1986),
Hughes and Franca (1987) and Franca and Hughes (1988) to the Stokes prob-
lem, improving on the idea of Brezzi and Pitkaranta (1984) that we shall
develop later. Our emphasis will be on the variant of Douglas and Wang
(1989) which we consider to be most suitable for the Stokes problem or,
more generally, for mixed problems. But let us first consider the formula-
tion of Brezzi and Pitkidranta (1984) which is simple and contains all the
basic ideas.

Example 7.1 (The stabilization of Brezzi and Pitkéranta.) The princi-
ple is very simple and consists of considering a perturbation of the Stokes
problem, that is to modify the problem (4.6) into

a(ue, v) +b(v,pe) = (f,v), VeV,
b(ue,q) =€ [ gradp. -gradqdz, Vg€ Q. (7.1)
Q
This is the variational formulation of the problem,
-2y Au, +gradp, = f, (7.2)
divu, +eAp. = 0, (7.3)
wlr=0 2| - o (7.4)

onlr

We see from (7.4) that a parasitic Neumann boundary condition has been
introduced for the pressure. In practice, this will imply a boundary layer
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effect and pressure values will be polluted near the boundary. Nevertheless,
one can guess how this model stabilizes an unstable finite element method:
chequerboard modes are highly oscillatory and they will be removed by the
smoothing effect of the Laplace operator.

The proof that the solution obtained from the method of Example 7.1 is
stable will be derived in two steps. First we shall try to obtain a bound
on the difference between the solution of the perturbed problem and the
solution of the standard Stokes problem. It can be proved (Brezzi and
Fortin, 1991) that one has the following estimate.

Proposition 7.1 Let (u,p) tbe the solution of Problem (4.6) and (u., p.)
be the solution of Problem (7.1). Then we have

llw — uelly + Ip = pello < cVellpll1- (7.5)

O

We refer to Brezzi and Fortin (1991) for a proof.

This result is not optimal and one can get an 0(5%‘5) estimate if p is
smooth enough. However (7.5) is sufficient for our present purpose. Indeed,
taking € = O(h?) will make the error in (7.5) of the same order as the error
in a standard approximation by piecewise linear functions. Therefore, we
can discretize Problem (7.1) with the simplest possible elements, such as a
P,-P; or a Q1—Q; approximation and obtain results converging with the
correct asymptotic accuracy. This gain is, however, not as complete as one
would like. The choice of € is critical: if it is too small, pressure oscillation
remains while if it is too large, boundary layer effects will spoil the solution.
What we would ultimately like to find would be a more robust formulation.
A first step toward this is to employ the Galerkin-least-squares formulation
as in Hughes and Franca (1987). To understand it better, we return to the
Lagrangian of Problem (4.7) which we change tentatively to

inf sup p [ |e@)|? dw—/ gdivvdz (7.6)
VeV qeQ Q Q

—/f-vda:—cs/ |Av+gradq—f|2dz‘.
Q Q

Note that we have added a squared term with a negative sign. This is
because we want to stabilize the pressure which is the dual variable in the
saddle-point problem. As in the Galerkin-least-squares method, this squared
term corresponds to one of the equations in the strong form, namely (7.2).
We could have added the square of the second equation to improve the
coercivity properties of the problem with respect to u. In the present case,
this is of no use as the bilinear form a(, -) is already fully coercive. Examples
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of cases where this modification would be useful can be found in Brezzi,
Fortin and Marini (1992).

Formulation (7.6) needs a few comments. The first one is that it is in
fact ill defined: indeed, for v € V, Av is not square-integrable. We should
therefore move to a more regular space, with the side effect of a more difficult
approximation, or weaken the formulation as we shall do later. The second
comment is that something will go wrong with the coercivity with respect
to u as we now have a bilinear form

a(u,v) = u/ﬂe(u) :efv)dx — e/QAv - Avdz. (7.7)

The negative sign impairs the coercivity of a(-,-). Only for discrete prob-
lems can this be cured, by taking € small (e.g., @(h?)), and by using the
equivalence of norms on a finite-dimensional space, more precisely an inverse
inequality of the form

C
l4vlo < > lle@nlo (78)

Let us return to the first point. In order to be able to employ a standard
finite element approximation, we shall write the least-squares terms in the
form

eZ/K{Av+gradq—flzdz. (7.9)
K

This is now well defined on the space
W = {(v,q)|Av + grad q|,, € L*(K),VK € T,}. (7.10)

Standard finite element discretizations of H1(£2) x L?(f2) are also contained
in W as the restriction to an element is a regular polynomial function. This
modification does not, however, cure the problem of coercivity. The answer
to this second issue is a formulation introduced by Douglas and Wang (1989)
where the variational problem (4.6) is modified into

a(ue, v) + b(v, pe)
+EEK/ (Au. + gradp. — f) - Avdz = (f,v), Vv eV,
K

buesd) — e [ (Auc +gradp. - f) - gradqds =0, Vg€ Q.
(7.11)
This differs by one sign change from what would be obtained by the opti-
mality conditions of Problem (7.6). This sign change is nevertheless crucial:
choosing v = u, and ¢ = p¢ in (7.11) and substracting the two equations
one gets

u/ﬂ le@).|? dz + GZ/K |Au + gradp?dz < (| fII?).  (7.12)
K
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We have therefore obtained stability in the space W defined in (7.10) for
any value of e. It might appear that we have not really stabilized gradp
but only Au + grad p. However, as u is generally smooth, the stabilization
effort really bears on p. Formulations of this type have been used with suc-
cess with many finite element formulations. They allow equal-interpolation
approximations of low order which would otherwise be forbidden in standard
variational formulations. Everything is not as nice as it would seem from
the above discussion: the solution still suffers from a parasitic boundary
condition on p and a boundary layer effect. The source of trouble is that the
term Au in Au+ gradp— f is not computed accurately in a standard finite
element approximation. It will normally be approximated at one order lower
than the other terms. The limiting case is the piecewise linear one where
Au|k is always identically zero. This will oblige us to take again ¢ = O(h?)
to recover the corrrect error estimate. Moreover, this lack of accuracy in one
term spoils the solution in a visible way near the boundary. Many techniques
have been advocated to remove this boundary layer effect (e.g., Brezzi and
Douglas (1988)). The most popular one consists in substracting boundary
effects by adding a correcting term to the formulation. For example, one
might modify Problem (7.11) into

( afuev) +b(,p)
+eZK/K(Au€ +gradp. — f) - Avdz = (f,v), Yo eV,

b(ue,q)—eZK/ (Au, +gradp. — f) - gradgqdz
K
—/ ((Aue + gradp. — f) -nqgds =0, Vge€Q.
on

.

\
(7.13)

Numerical results obtained through such modifications are good (cf., e.g.,
Leborgne (1992)). However, coercivity properties are lost and getting a
solution from the discretized problem becomes delicate. The correct way
of eliminating boundary layer effects is still an open problem. To conclude,
stabilized formulations are an important new idea in the approximation of
incompressility, an idea which is likely to see new developments in future
years.

8. Numerical methods for the discretized problems

Given a stable approximation, we now have the practical task of effectively
computing the approximate solution. We shall deal with two different issues,
namely the treatment of the incompressibility condition and the treatment
of the full nonlinear Navier—Stokes problem.
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8.1. Penalty methods

The numerical methods which we want to introduce are based mainly on
techniques derived from penalty methods. We shall therefore describe these
briefly. We use the steady-state Stokes problem as a prototype but ths
idea applies to any incompressible problem. A penalty method is then a
perturbation of our original problem (4.6) into

{ a(ue,v) + b(v,p) = (f,v), Yv eV,

b(ue, q) — E/Qpeqdw =0, Vge@. (8.1)

It can be shown (Bercovier (1978) or Brezzi and Fortin (1991)) that the
error induced by this (regular) perturbation is O(e¢). Let us now consider
the matrix form of the discrete problem already presented in Section(4.5).
The problem becomes

(,’; —eixiQ)(g)=(f>- (8.2)

But the matrix M@ is invertible and it is possible to eliminate pressure from
these equations to obtain

AU + %Bt(MQ)‘lBU =F. (8.3)

Once U has been obtained by solving (8.3), one can calculate the pressure
by

P- %(MQ)‘IBU. , (8.4)

This procedure is in fact usable only if the matrix M < is easily invertible
(Bercovier, Engelman and Gresho (1982)). For discontinuous pressure ap-
proximations described in Section 5, we can invert M element by element
and the numerical implementation is direct. It must be said that this simpli-
fication also has some disadvantages: the system (8.3) is ill conditioned for
€ small. Care must be taken if one wishes to get an accurate solution, and
the convergence of iterative methods, such as a conjugate-gradient method
is jeopardized. For continuous pressure approximations, (M®)~1 is a full
matrix and the reduced problem is not tractable. The perturbed problem
(8.2) is nevertheless employed as it cures the singularity (p is defined up to
an additive constant) of the original problem in the case of pure Dirichlet
conditions on wu.

8.2. The augmented Lagrangian method

We briefly describe here how a simple iterative procedure, called the aug-
mented Lagrangian method, can be employed to remove penalty errors and
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to efficiently compute a solution of the original problem (4.16). Our pre-
sentation will be sketchy by necessity. We refer to Fortin and Glowinski
(1983) for a precise analysis of the method. This technique is also closely
related to the artificial compressibility method introduced by Chorin (1968)
and widely used under different names.

Suppose that we choose P, an arbitrary initial guess for the pressure.
We then compute, P,, being known, P,; from the relation,

< ; —ff”Q ) ( g::i ) - ( —e/\fQPn ) (8.5)

If M@ is easily invertible, one can write this in the decoupled form,

AU, + %Bt(MQ)‘lBUn =F - B'P,, (8.6)

MOP, = MPP, + %BUn. (8.7)

This is a special case of a more general algorithm, Uzawa’s algorithm, for the
numerical solution of saddle-point problems. Convergence is easily proved
for any positive value of e. Taking € small, (say 10~%) makes the algorithm
convergent to machine precision in two or three iterations. In fact taking
€ small makes the dual problem in p very well conditioned (cf. Fortin and
Pierre (1992)) so that this iteration, which is in fact a gradient method
for the dual problem, converges very rapidly. The price we pay is that
Problem (8.6) in U is ill conditioned. When an iterative solution is needed,
as is often the case in three-dimensional problems, a balance should be kept
between the convergence of the iteration for solving Problem (8.6) and the
convergence of the outer iteration in (8.7). Methods of this type have also
been used as preconditioners for conjugate-gradient methods (e.g., Fortin
(1989)).

8.8. Nonlinear problems

When the Navier-Stokes problem is considered, we have to solve a large
nonlinear system. The most popular method is Newton’s method which
reduces this solution to a sequence of linear incompressible problems. The
augmented Lagrangian method can then be used to solve these linear prob-
lems. Under some restrictions on the choice of € it can also be incorporated
to Newton’s iteration (Fortin and Fortin, 1985b). The most efficient solu-
tion method is, however, to employ a conjugate-gradient-like iteration such
as the GMRES method of Saad and Schultz (1986) with a suitable precondi-
tioning. One then needs only to compute products of some vectors and the
Jacobian matrix and this can be approximated by differences, avoiding the
actual computation of the Jacobian. A very good description of this tech-
nique can be found in Shakib, Hughes and Zdenék (1989) for compressible
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problems and can be transposed directly to incompressible problems. For
incompressible problems, some approximate augmented Lagrangian method
can be used as a preconditioner (Fortin, 1989).

9. Time-dependent problems

Our original problem was time-dependent and we now return to this aspect.
The standard procedure for the discretization of a time-dependent problem
is to first consider a discretization in space, reducing it to a large system of
ordinary differential equations and then to employ some numerical scheme
for this system. The choice of scheme can then be made from a vast collection
of ODE solvers.

9.1. Time discretization, projection methods

One important point in the choice of a time discretization is that the system
is not of Cauchy—Kovalevska type as there is no derivative in time of the
pressure in the equations. In fact, in this respect, the problem is related to
the so-called algebraic—differential systems (Petzold, 1983). It can be seen
that the pressure part is elliptic. Indeed, taking the divergence of equation
(3.1), we obtain the Poisson pressure equation

— Ap =div(u - gradu) —div f, (9.1)

in which we have used (3.2) to eliminate a number of terms. This equation
(9.1) holds at all times. It has been widely employed in the construction
of time-stepping procedures, but difficulties arise from the absence of pres-
sure boundary conditions. There is, in reality, no rigorous way to obtain
such conditions apart from some iterative procedure or the construction of
an integral equation on the boundary of the domain like in Glowinski and
Pironneau (1979) (see also Gresho and Sani (1987)). This being said, it is
possible to include the solution of a Neumann problem in p into a fractional
step method, such as the projection method introduced in Chorin (1968) and
developed in Fortin, Peyret and Temam (1971). This scheme, in its simplest
form, would consists of an advection step followed by a projection on the
subspace of divergence-free functions. However, it is not immediately clear
in which space should the projection take place. The two obvious choices
are L2(Q?) or H}(R). Let us consider in some detail these two cases.

Lemma 9.1 (The L?() projection.) Let u be given in (L2(€2))". Then
u can be written as

u = ug + grad pg + grad p;, (9.2)
with po € H}(R), p1 € H(Q) and up € Ho(f2), where
H(Q) = {g|q € H'(Q), Ap =0}, (9.3)
Hy(Q) = {v|v € (L*(Q))*,dive =0,v - n),, = 0}. :
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Proof. The idea is essentially to solve a Dirichlet problem,

— Apg = divu, (94)
to compute u; = u — grad py, to solve a Neumann problem
0
—- Ap; =0, o u; - non 91, (9.5)
on

and then finally obtain g = u; — gradp;. O

A few remarks are needed about the boundary conditions employed. First,
the condition 1 -n has to be justified for it does not make sense, a priori, to
write a boundary condition for a function in (L?(2))". We refer to Temam
(1977) for this justification. Second, the two problems (9.4)—(9.5) may be
combined into one:

0.
% =wu - n on 09, (9.6)
provided u slightly more regular, namely if divu € L?(2). Let us now see
how one can use this approach to construct a fractional step method.

— Ap =divu,

Example 9.1 (The L? projection scheme.) This scheme will be a frac-
tional step method and many variants are possible, depending on the implicit
or explicit character of the first step. We shall consider here the implicit
variant, which we feel is more reliable but other cases can be easily formu-
lated. Moreover, we shall not explicitly introduce a space discretization and
we shall, formally, write the scheme without any such discretization. Let
then 4™ and p™ be known at time step n. We shall compute the solution at
the next time step n+ 1 in two substeps. First, we solve, denoting by 6t the
time step,

uti —un”
st
This is a nonlinear problem which can be solved either by a Newton method
or an approximate Newton method. No incompressibility condition is im-
1 . . .
posed on ™2 and the next step intends to correct this deficiency by pro-
jecting it on the divergence-free subspace H(f2). This amounts to solving
a Neumann problem:

+u™i . gradu™? — 2u Au™E +gradp”=f.  (9.7)

351)_ n+1
m

(S]]

— Abp = divuti, -1 on 8Q (9.8)
and then to compute

unrtl = un+% - grad 5p’ (99)
pmtt=p" + 6p.
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This is simple, but something is wrong: u"*! does not satisfy the correct
boundary conditions because the projection step only requires u™*!.n to be
null and leaves the tangential condition w™*! - ¢ undetermined. In practice,
this problem is bypassed, in a discretized setting, by inserting the correct
values at boundary nodes after the projection step. This is a new projection
step, in some nonexplicit topology. The result is a scheme which is essentially
first order in 6t. O

To do improve this, we would like to be able to project in (H{(£2))"-norm.
But this is essentially equivalent to solving a Stokes problem.

Lemma 9.2 (The (H}(2))"-projection.) Let u be given in (H(2)". Then
u can be written as
u = ug + up, (9.10)

where ug € V() with
Vo(Q) = {v|v € (H}(Q)™,dive = 0}, (9.11)

and is the solution of the problem

{ Augy + gradm = Au, (9.12)

div Uy = 0,

where m is analogous to a pressure and serves to enforce the divergence-free
condition.

Proof. The problem is to find ug as the solution of the constrained mini-
mization problem,

: _ 2
o2 lletws) — @)1 o (9.13)

Introducing the Lagrange multiplier m and writing the optimality conditions
of the Lagrangian obtained, one gets (9.12). O

Using this result we are naturally led to a new projection scheme.

Example 9.2 (The H}-projection scheme.) Let u™ and p" be known at
time step n. We shall compute the solution at the next time step n + 1 in
two substeps. First, we solve, denoting by 6t the time step,

un+% —u”

5 +u™ti - gradu™: — 2u Au™tE +gradp” = f.  (9.14)

We then project u"*+% by solving

Aumtl 4 grad bp = Au™t3,
div g1 = 0, (9.15)
prtt=p" +bp.
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This is only one of possibie variants and second-order methods can also be
built using the #-scheme such as in Bristeau, Glowinski and Périaux (1987?)
or other techniques (Bell, Colella and Glaz, 1989). The price we pay for this
better handling of boundary conditions in the projection step is that the
Stokes Problem (9.15) defining u™*! is harder to solve than the Neumann
problem (9.15). Using this method means that one should dispose of an
efficient and simple Stokes solver. O

Finally, a brute force method, that is a fully implicit scheme, can also be
employed.

Example 9.3 (The fully implicit scheme.) Let 4™ and p" be known at
time step n. We compute the solution at the next time step n + 1 by
solving:

un+1 —u"
+u™t!. gradu™?! — 24 Aumt! + gradp™t! = f,
8 (9.16)

divunrt! = 0.

Now u™*! is the solution of a nonlinear incompressible problem. One pos-
sible way to solve this is by the penalty method already discussed. An
equivalent way of introducing it is through the ‘artificial compressibility
method’ of Chorin (1968) which is usually written as a perturbation of the
above scheme:

un+l —u”
— u™l. gradu™*! — 2 Aumt! + gradp™t! = f,
(9.17)
n+l _ ,.n
ep———p —div u"“ =0.
ot
Using the second equation, the first one may be written as
n+l _ ,,n
¢ 5 Y 4wl gradunt! (9.18)

ot
—2u Aumtl 4 —graddiv u™! + gradp” = f,

which is nothing but a penalty method for the solution of (9.16). One also
sees that € should be small with respect to 6t which may give rise to severe
ill-conditioning. An iterative variant based on the augmented Lagrangian
method is therefore much more preferable. O

Remark 9.1 In the implicit scheme (9.16) we have used an implicit Eu-
ler’s scheme which is a stiffly-stable implicit method for ordinary differential
equations (cf. Crouzeix and Mignot (1984). This strong stability property is
highly desirable for large systems. However, it is now quite well established
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that to detect bifurcations to unsteady solutions in nonlinear Navier—Stokes
problems correctly, a second-order scheme is essential (Fortin, Fortin and
Gervais, 1991). A reasonable solution is through Gear’s method which is
a two-step implicit stiffly-stable scheme. It requires knowledge of u" and
u™! to compute u"*!.

%un+1 —2u™ + %un—l
ot

+ untt -grad un+1

9.19
—2u Aurntl! +gradpn+1 = f, ( )

divu™tl = 0.

This scheme has been successfully employed for the computation of Hopf
bifurcations. O

Remark 9.2 An interesting variant for a totally implicit scheme consists
in using a method of characteristics for the discretization of advection terms
(cf. Pironneau (1989)). The simplest way to do so can be summarized in
the following algorithm.

For any vertex V of coordinates & compute . = © — §t (9.20)

Compute u(x,t,) = u(x., t,). (9.21)

n+1

To compute u one then solves

un+1 - u,
5 2u Au™! 4 gradp™t! = f,
t (9.22)

divunt! = 0.

The problem to solve in u™*! is then a linear problem which can be solved
by any suitable Stokes solver. More sophisticated versions of this idea are
currently employed in industrial codes.

10. Conclusion

The possible issues to be considered in the numerical solution of the Navier—
Stokes equations are so numerous that only a small fraction of them has been
addressed here. Some, such as solution algorithms, have only been sketched.
Finally, questions related to a posteriori error estimations and adaptivity
have been completely ignored. The main difficulty remaining in the field is
certainly the treatment of flows at high Reynolds number. Boundary layers
imply delicate questions of mesh adaptation. Turbulence models, which try
to represent the macroscopic effects of the small scales of the flow, are also
an important issue. With respect to the treatment of incompressibilty which
was our main topic, three-dimensional problems remain a challenge in both
the construction of accurate elements and in the design of efficient solution
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methods. We hope that this article shall be useful as a guide into the rapidly
changing world of computational fluid dynamics.
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